Modulation of Integrin CD11b as a Novel Therapeutic Strategy Against Lung Cancer

Terese Geraghty1, Anugraha Rajagopalan1, Rabail Aslam1, and Vineet Gupta1
1Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL

Abstract

A major problem facing cancer therapy is the immune suppression by the tumor and its subsequent escape from the immune response, which is mediated by the tumor microenvironment. Tumors have large numbers of myeloid derived suppressor cells (MDSCs), which suppress the adaptive immune response, increase neo-angiogenesis, and promote tumor survival. GB1275 is a novel small molecule CD11b allosteric modulator. In pancreatic cancer models, GB1275 reduced MDSC infiltration and M2 macrophage polarization leading to tumor growth inhibition. GB1275 is currently in Phase 1/2 clinical development in multiple cancer types. To investigate the impact of CD11b modulation in the context of lung cancer, GB1275 treatment effects on tumor growth and immune infiltrates were assessed in the Lewis Lung Carcinoma (LLC) syngeneic tumor model, propagated in C57BL/6 wild type (WT) mice. Additionally, we developed a transgenic CD11b knock-in (KI) mouse that renders CD11b in a partially active state. CD11b KI mice were engineered to express partially active CD11b by introducing a point mutation at position 332 causing an isoleucine to glycine switch (I332G). We studied LLC tumor growth in CD11b KI mice as an orthogonal approach to test the mechanism of action. Pharmacologic modulation of CD11b with GB1275 significantly reduced LLC tumor growth. Additionally, CD11b KI mice that showed a significant reduction in both the size and the rate of LLC tumor growth, as compared to the WT mice, mimicking treatment effects with GB1275. We found that CD11b modulation by GB2175 is T cell-dependent. Pharmacologic or genetic CD11b modulation significantly reduced CD11b+ myeloid cell recruitment, resulted in a phenotypic switch in innate and adaptive immune cells in lung tumors to enhance the adaptive immune response and is a novel strategy against lung cancer.

CD11b+ cells are abundant in human NSCLC tissues

Pharmacologic CD11b modulation delays tumor growth

Genetic CD11b modulation in CD11b knock-in mice showed reduced tumor growth

Tumor growth inhibition mediated by CD11b modulation is T cell-dependent

CD11b modulation reduced neo-angiogenesis in LLC tumors

Conclusions

• CD11b modulation works to slow LLC tumor growth by reducing myeloid cell recruitment, decreasing neo-angiogenesis, and by significantly changing tumor immune profiles.
• Our findings suggest a novel therapeutic strategy against lung cancer via pharmacologic CD11b modulation