In Vivo Efficacy of a Novel, Inhaled PDGFRα/β Inhibitor, GB002, in the Rat Monocrotaline and Pneumonectomy Model of Pulmonary Arterial Hypertension

Ravikumar Sitapara, Debbie Slee, Luisa Salter-Cid, Lawrence Zisman
Disclosures

• The presenter, Lawrence Zisman is employed by Gossamer Bio, San Diego CA and owns stock in Gossamer Bio Inc.
Background and Hypothesis

• The PDGF pathway drives adverse vascular remodeling in pulmonary arterial hypertension (PAH).
• GB002 is a novel, potent, clinical stage inhibitor of PDGFRα/β kinases.
• GB002 is formulated as a dry powder and delivered by inhalation.
• The rat Monocrotaline (MCT) Pneumonectomy (PN) model, develops a neointimal pattern of remodeling and severe right ventricle hypertrophy resembling important aspects of human PAH.
• Hypothesis: Inhaled GB002 would lower pulmonary artery systolic pressure (PASP) and lessen the severity of neointimal lesions in the MCT+PN model.
Study Design

GB002 and vehicle administered BID for 11 days.
GB002 prevented progression of severe pulmonary hypertension in the MCT-PN model

On day 9, 10, and 11, PASP was 34%, 37%, and 41% lower, respectively, in the GB002 group vs. the vehicle group.

Vehicle (n=12)
GB002 (n=7)

*p<0.05

Data presented as mean ± SEM.
GB002 significantly decreased RVESP and RV hypertrophy.

Vehicle (n=6)
GB002 (n=11)

*p<0.001

Data presented as mean ± SEM.
GB002 decreased neointimal lesions and fibrosis
GB002 reverse remodeled pulmonary arterioles

Vehicle	GB002

Vehicle (n=6) | GB002 (n=11)
*p<0.0001

Data presented as mean ± SEM; Grading system per Toba et al. AJP 2014;306:H243.
Summary and Conclusions

• GB002 is a novel inhaled PDGFRα/β inhibitor with potentially disease-modifying characteristics

• In the rat MCT PN model, a severe model of PAH that closely replicates key features of the human disease, inhaled GB002 prevented:
 ▪ Progression of pulmonary arterial hypertension
 ▪ Adverse remodeling of the pulmonary vasculature

• A phase 1b clinical trial of GB002 is ongoing (NCT03926793)
Acknowledgments

• The work performed in this study was supported by NIH grant HL102946

• Team at Gossamer Bio: Ravi Sitapara, Anna Galkin, Laura Carter, Debbie Slee, Luisa Salter-Cid
Thank you!