

SERALUTINIB FOR THE TREATMENT OF PULMONARY ARTERIAL HYPERTENSION (PAH): **RESULTS FROM THE PHASE 2 TORREY TRIAL**

Robert P. Frantz^{1*}, Vallerie V. McLaughlin^{2*}, Sandeep Sahay³, Pilar Escribano Subías⁴, Ronald L. Zolty⁵, Raymond L. Benza⁶, Richard N. Channick⁷, Kelly M. Chin⁸, Anna R. Hemnes⁹, Luke S. Howard¹⁰, Olivier Sitbon¹¹, Jean-Luc Vachiéry¹², Roham T. Zamanian¹³, Matt Cravets¹⁴, Robert F. Roscigno¹⁴, David Mottola¹⁴, Erin Elman¹⁴, Hossein-Ardeschir Ghofrani¹⁵ on behalf of the TORREY Study Investigators ¹Mayo Clinic, Rochester, MN, USA; ²University of Michigan, Ann Arbor, MI, USA; ³Houston Methodist Hospital/Weill Cornell Medicine, Houston, TX, USA; ⁴University, Columbus, OH, USA; ⁷UCLA Medical Center, Los Angeles, CA, USA; ⁸UT Southwestern Medical Center, Dallas, TX, USA; ⁹Vanderbilt University, Nashville, TN, USA; ¹⁰Imperial College Healthcare NHS Trust, London, UK; ¹¹University Giessen, Giessen, Germany. *Contributed equally to this work

BACKGROUND

- PDGFR, CSF1R, and c-KIT kinase pathways play key roles in the inflammation, proliferation, and fibrosis that drive pulmonary vascular remodeling in PAH
- Vascular remodeling leads to increased pulmonary vascular resistance (PVR) and decreased pulmonary artery compliance (PAC), resulting in right heart failure
- Seralutinib is a novel tyrosine kinase inhibitor designed for dry powder inhalation that targets these dysfunctional pathways¹ and has the potential to improve PVR and PAC (Figure 1)

Figure 1. Seralutinib mechanism of action¹

Figure: Galkin A et al. *Eur Respir J*. 2022;60(6):2102356.

METHODS

• Phase 2, randomized, double-blind, placebo-controlled, multicenter study (NCT04456998)²

- Inclusion criteria: World Health Organization (WHO) Group 1 PH, Functional Class (FC) II or III, on standard background therapies, 6-minute walk distance (6MWD) \geq 150 m and \leq 550 m, PVR \geq 400 dyne*s/cm⁵
- Patients randomized 1:1 to seralutinib or placebo twice daily for 24 weeks (Figure 2)
- Endpoints
- Primary: Change in PVR from baseline (BL) to Week 24
- Secondary: Change in 6MWD from BL to Week 24
- Exploratory: NT-proBNP
- Safety assessed during scheduled visits
- RHC analyses: PAC^a and other cardiopulmonary hemodynamic parameters
- Statistical analyses: Change in PVR from BL to Week 24 based on analysis of covariance (ANCOVA) modelling with multiple imputation. Secondary and exploratory endpoints analyzed used mixed-effects models for repeated measures (MMRM). Analyses based on intention-to-treat (ITT) population.
- ^a PAC = stroke volume/(pulmonary artery pulse pressure)

Figure 2. Study schema

^a Randomization stratified by PVR (< 800 dyne*s/cm⁵ vs \geq 800 dyne*s/cm⁵). ^b Patients started on 60 mg (4 inhalations) BID and after 2 weeks escalated to 90 mg (6 inhalations) BID as tolerated. 6MWT, 6-minute walk test; BID, twice daily; RHC. right heart catheterization.

RESULTS

- 86 patients randomized to treatment at 40 sites worldwide; 80 patients completed the study
- Seralutinib and placebo groups balanced except for WHO FC (seralutinib, 68%/32% FCII/III; placebo, 48%/52% FCII/III)
- 44.2% received parenteral prostacyclin

Table 1. Baseline demographics and disease characteristics. Data presented as mean (SD) unless otherwise noted

Characteristic	Placebo (N=42)	Seralutinib (N=44)	Characteristic	Placebo (N=42)	Seralutinib (N=44)
Age, y Female, n (%)	49.5 (11.81) 38 (90.5)	48.3 (12.70) 40 (90.9)	mPAP, mmHg	50.0 (9.58)	51.9 (11.71)
Race, n (%)			PCWP or LVEDP, mmHg	10.8 (2.87)	11.0 (2.82)
Other	5 (11.9)	37 (84.1) 7 (15.9)	Cardiac output, L/min	4.865 (0.985)	5.033 (1.037)
Years since PAH diagnosis	8.78 (7.218)	8.07 (7.074)	PVR, dyne*s/cm⁵	661.3 (164.91)	675.8 (240.35)
PAH classification, n (%)			6MWD, m	407.1 (107.02)	408.6 (75.11)
Idiopathic	22 (52.4)	20 (45.5)	NT-proBNP, ng/L	645.6 (1158.75)	611.0 (714.58)
Heritable Associated with CTD Drug or toxin-induced Associated with congenital shunts	5 (11.9) 11 (26.2) 4 (9.5) 0	10 (22.7) 6 (13.6) 5 (11.4) 3 (6.8)	Number of background therapies, n (%) < 3 3	18 (42.9) 24 (57.1)	19 (43.2) 25 (56.8)
WHO FC, n (%) Class II Class III	20 (47.6) 22 (52.4)	30 (68.2) 14 (31.8)	Prostacyclin/Prostacyclin receptor agonist use, n (%) Parenteral Oral	19 (45.2) 10 (23.8)	19 (43.2) 10 (22.7)

6MWD. 6-minute walk distance; CTD, connective tissue disease; FC, functional class; LVEDP, left ventricular end-diastolic pressure; mPAP, mean pulmonary arterial pressure; PAH, pulmonary arterial hypertension; PCWP, pulmonary capillary wedge pressure; PVR, pulmonary vascular resistance; WHO, World Health Organization

RESULTS

^a Based on an ANCOVA model with multiple imputation

Table 2. Change from baseline to Week 24 in pulmonary hemodynamic parameters. A significant reduction in mPAP (p=0.0094) was the main driver of the observed reduction in PVR. Treatment with seralutinib was associated with a significant improvement in PAC (p=0.0410)

-300

-400

Daramotor	Placebo (N=42)	Seralutinib (N=38)		
Farameter	LS mean change ± SE	LS mean change ± SE	LS mean difference (95% CI)	
mRAP, mmHg	0.85 ± 0.532	-0.14 ± 0.576	-0.99 (-2.350, 0.367)	
PASP, mmHg	1.74 ± 2.321	-5.24 ± 2.469	-6.98 (-12.77, -1.19)*	
PADP, mmHg	1.95 ± 1.127	-1.47 ± 1.197	-3.43 (-6.21, -0.64)*	
mPAP, mmHg	2.12 ± 1.415	-2.58 ± 1.508	-4.70 (-8.203, -1.188)*	
Cardiac output, L/min	-0.15 ± 0.165	0.06 ± 0.173	0.20 (-0.204, 0.605)	
Cardiac index, L/min/m ²	-0.02 ± 0.092	0.11 ± 0.097	0.13 (-0.100, 0.359)	
PCWP or LVEDP, mmHg	1.04 ± 0.574	0.54 ± 0.608	-0.50 (-1.963, 0.963)	
PVR, dyne*s/cm⁵	21.2 ± 29.91	-74.9 ± 33.02	-96.1 (-183.5, -8.8)*	
PA compliance, mL/mmHg ^a	-0.02 ± 0.085	0.19 ± 0.089	0.22 (0.009, 0.423)*	
Stroke volume, mL	-4.57 ± 2.206	-0.78 ± 2.313	3.79 (-1.606, 9.190)	
Stroke volume index, mL/m ²	-1.81 ± 1.263	0.38 ± 1.313	2.19 (-0.917, 5.299)	

-200 -100 0

100 200 300

p<0.05. PA compliance = stroke volume/PA pulse pressure: PA pulse pressure = PASP-PADP. Observed cases. except for PVR. which used multiple imputation. S, least squares; LVEDP, left ventricular end-diastolic pressure; mPAP, mean pulmonary arterial pressure; mRAP, mean right atrial pressure; PA, pulmonary artery; PAC, pulmonary artery compliance; PASP/PADP, pulmonary artery systolic/diastolic pressure; PCWP, pulmonary capillary wedge pressure; PVR, pulmonary vascular resistance; SE. standard error.

Follow-up

24

CONCLUSIONS

- Seralutinib, an inhaled PDGFR, CSF1R, and Kit tyrosine kinase inhibitor, demonstrated clinical activity and safety in the Phase 2 TORREY trial
- TORREY met the primary endpoint of reduction in PVR in a heavily treated, prevalent study population on standard of care background medications
- Prespecified subgroup analyses showed greater benefit in FC III and patients with REVEAL 2.0 risk score ≥ 6
- The reduction in PVR and increase in PAC in conjunction with a reduction of NT-proBNP indicates that seralutinib is reducing RV afterload and having a beneficial effect on the right heart
- Proof of concept has been demonstrated and a global registrational Phase 3 program in PAH is planned

References: 1 Galkin A et al. Eur Respir J. 2022;60(6):2102356. 2 Frantz RP et al. Pulm Circ. 2021;11(4):20458940211057071. Acknowledgements: We thank all patients, their families, and all the TORREY study investigators and study coordinators who participated in TORREY. **Research supported by:** Gossamer Bio, Inc.

Authors' relevant interests: RPF: Gossamer Bio, Inc., Janssen, Liquidia, Merck, ShouTi, Tenax Therapeutics, Insmed (Advisory Committee); Janssen, Liquidia (Consultant); Aerovate Therapeutics (DSMB). HAG: Gossamer Bio, Inc., Aerovate, Altavant, Bayer AG, Attgeno, Janssen/Actelion, MSD/ Acceleron, Pfizer (Consultant, Advisory Committee); Bayer AG, Janssen/Actelion, MSD/Acceleron (Speaker); Insmed (DSMB).

Presented at The American Thoracic Society Annual Meeting, Washington, DC, May 19–24, 2023.

- higher

- Types of adverse events (AEs) observed were consistent with an inhalation therapy, i.e., mild-to-moderate cough
- Most treatment-emergent AEs reported were mild-to-moderate in severity
- No fatal AE was reported
- No adverse effect on pulmonary function or hematologic parameters
- Liver enzyme elevations > 3x upper limit of normal (3 seralutinib patients, 2 placebo patients)

Table 3. Overall summary of adverse events

	Placebo (N=42)	Seralutinib (N=44)	
Frequency of adverse events			
Number of patients with at least one (%):			
TEAE	36 (85.7)	41 (93.2)	
Severe TEAE	2 (4.8)	6 (13.6)	
Related TEAE	22 (52.4)	28 (63.6)	
TEAE leading to discontinuation of study drug	1 (2.4)	6 (13.6)	
TEAE leading to withdrawal from study	0	4 (9.1)	
SAE	6 (14.3)	10 (22.7)	
Incidence of TEAEs by preferred term ^a : ≥ 5% higher in seralutinib group, n (%)			
Cough	16 (38.1)	19 (43.2)	
Diarrhea	3 (7.1)	6 (13.6)	
Dizziness	2 (4.8)	5 (11.4)	
Nightmare	1 (2.4)	4 (9.1)	
Abdominal pain lower	0	3 (6.8)	
Nasopharyngitis	0	3 (6.8)	
Throat irritation	0	3 (6.8)	
afety Population.			

^aCoded using MedDRA v 24.0.

MedDRA, Medical Dictionary for Regulatory Activities; SAE, serious adverse event; TEAE, treatment-emergent adverse event.

Download your copy of the **poster**

Download the **plain** language summary