EVIDENCE OF TARGET ENGAGEMENT AND MODULATION: BIOMARKER ANALYSIS OF THE PHASE 1 INHALED SERALUTINIB STUDY

ROBIN OSTERHOUT, KRISTIN B. HIGHLAND, ROBERT F. FRANTZ, DAVID NICKLE, JOHN McCOLLUM, CHARLES D. BURGER, ROBERT F. ROSSIGNOL, MATI CRAVESA, LAWRENCE S. ZISMAN, JEAN-MARIE BRUEY, LINKA S. HOWARD

BACKGROUND

• Abnormal signaling of PDGFα, CSFIR, and c-KIT, as well as BMPR2 deficiency drive cellular overgrowth in the lung vasculature and play key roles in the development of PAH.

• Seralutinib is an inhaled small-molecule kinase inhibitor which selectively targets PDGFα, CSFIR, and c-KIT signaling, and modulates BMPR2.

• Studies of inhaled seralutinib in animal models support pharmacodynamic activity in the human lung at doses levels expected to have biological and clinical activity:

 – 30-fold higher lung:plasma exposure
 – Extended lung target engagement
 – Reversal of pulmonary vascular remodeling, improved hemodynamics, increased lung BMPR2 and reduced circulating NT-proBNP

• Phase 1 studies in healthy volunteers and PAH patients demonstrated that seralutinib was well tolerated at doses up to 90 mg BID.

• Phase 2b multi-center, double-blind, randomized, placebo-controlled study (NCT03207868): Eight subjects (PAH, PC-III, on 2-3 background therapies) were randomized 3:1 to receive inhaled seralutinib 45 mg BID (escalating to 90 mg BID on day 8 at PI discretion) or placebo for 2 weeks.

• Following informed consent, peripheral blood was collected for exploratory biomarker assessment at baseline and day 14 of three transportaes relative to inhalation (pre-dose, 5 min and 120 min).

• Percent inhibition of CSFIR receptor internalization was measured using a novel whole blood M-CSF induced CSFIR internalization FACs assay developed in-house and run at Primity Bio.

• Whole blood gene expression mRNA profiling was performed using NovaSeq.

METHODS

• Phase 1b, multi-center, double-blind, randomized, placebo-controlled study (NCT03207868): Eight subjects (PAH, PC-III, on 2-3 background therapies) were randomized 3:1 to receive inhaled seralutinib 45 mg BID (escalating to 90 mg BID on day 8 at PI discretion) or placebo for 2 weeks.

• Following informed consent, peripheral blood was collected for exploratory biomarker assessment at baseline and day 14 of three transportaes relative to inhalation (pre-dose, 5 min and 120 min).

• Percent inhibition of CSFIR receptor internalization was measured using a novel whole blood M-CSF induced CSFIR internalization FACs assay developed in-house and run at Primity Bio.

• Whole blood gene expression mRNA profiling was performed using NovaSeq.

RESULTS

TARGET ENGAGEMENT

• Seralutinib inhibits CSFIR receptor internalization in PAH subjects at 5 min post inhalation demonstrating successful target engagement at the doses levels studied (Figure 2).

• Consistent with rapid systemic clearance, CSFIR internalization is no longer inhibited at 120 minutes.

PHARMACODYNAMICS: EPIDEMIOLOGICAL IMMUNOPROFILING

• Preliminary studies implicate FOXP3/C4D-Treg deficiency in development and severity of PAH.

• FOXP3/C4D ratio is elevated in all patients treated with seralutinib (median 17% increase).

• FOXP3/C4D is a novel candidate diagnostic marker for disease-modifying activity.

Figure 3. Seralutinib transiently inhibits CSFIR internalization. A. CSFIR assay schema; B. CSFIR activity in systemic circulation indicates target engagement at 5 minutes post-treatment (bars show mean and standard deviation).

Figure 4. Epigenetic immunoprofiling assay shows percent change from baseline in FOXP3/C4D ratio (% baseline).

SUMMARY & CONCLUSIONS

• Preliminary biomarker findings suggest seralutinib demonstrates biological activity in PAH patients after 2 weeks of treatment:

 – Target engagement and modulation of gene expression in the periphery suggest pharmacodynamic activity.

 – FOXP3/C4D T-cell ratio may represent a biomarker of therapeutic effect; requires further validation.

• A randomized, double-blind, placebo-controlled, multicenter, phase 2 clinical study (TORNADYHO15459898) to evaluate efficacy and safety of seralutinib for the treatment of WHO Group 1 PH is currently recruiting subjects.

• Candidate biomarkers will be measured in the phase 2 study to identify predictive and pharmacodynamic markers of treatment response, with the aim of advancing personalized medicine in PAH.

REFERENCES

ACKNOWLEDGEMENTS

The authors would like to thank the study investigators, study coordinators, and especially the patients and families who participated in this study. Presented at the PHA 2022 International PH Conference and Scientific Sessions, June 10-12, Atlanta, GA.