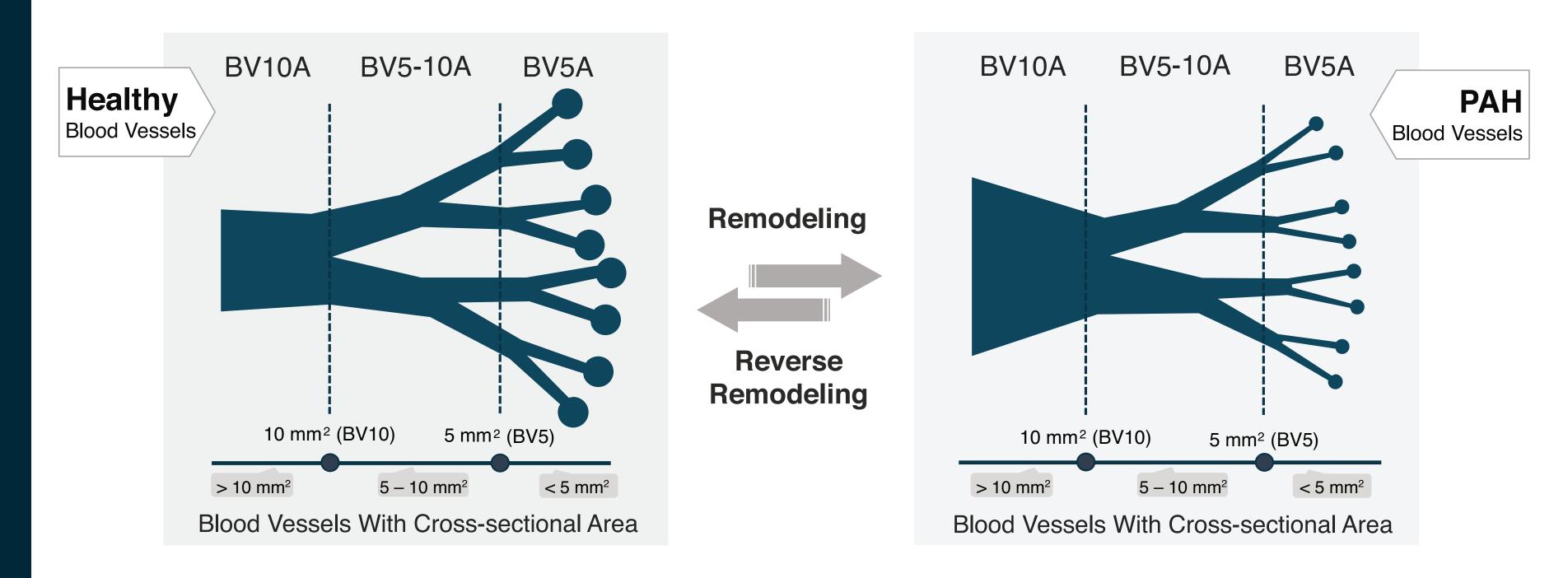
1046

SERALUTINIB IMPROVES PULMONARY ARTERIAL BLOOD VESSEL VOLUME DISTRIBUTION IN PULMONARY ARTERIAL HYPERTENSION (PAH): RESULTS OF THE TORREY PHASE 2 IMAGING SUBSTUDY

Presented at the
PH Professional
Network Symposium
Arlington, VA
September 28–30, 2023

Week 24


Roham T. Zamanian¹, Farbod N. Rahaghi², Luke S. Howard³, Marion Delcroix⁴, Sandeep Sahay⁵, Namita Sood⁶, Ronald L. Zolty⁷, Murali M. Chakinala⁸, Veronica Franco⁹, Pavel Jansa¹⁰, Shelley M. Shapiro¹¹, Leslie A. Spikes¹², Wendy Stevens¹³, R. James White¹⁴, Patrick Muchmore¹⁵, Ben Lavon¹⁵, Jan de Backer¹⁵, Thao Duong-Verle¹⁶, Robert F. Roscigno¹⁶, David Mottola¹⁶, Richard Aranda¹⁶, Matt Cravets¹⁶, Robin Osterhout¹⁶, Jean-Marie Bruey¹⁶, Ed Parsley¹⁶, Vallerie V. McLaughlin¹⁷, Robert P. Frantz¹⁸, Hossein-Ardeschir Ghofrani¹⁹, Olivier Sitbon²⁰, Lawrence S. Zisman¹⁶

¹Stanford University, Stanford, CA, USA; ³Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; ³Imperial College Healthcare NHS Trust, London, UK; ⁴University School of Medicine, St. Louis, MO, USA; ⁵The Ohio State University Wexner Medical Center, Conding Center, Omaha, NE, USA; ⁵Washington University School of Medicine, St. Louis, MO, USA; ⁵The University of Nebraska Medical Center, St. Louis, MO, USA; ⁵University of Nebraska Medical Center, St. Louis, MO, USA; ⁵University of Melbourne, St. Louis, MO, USA; ⁵University of Medicine, Los Angeles, CA, USA; ⁵University of Medicine, Los Angeles, CA, USA; ⁵University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹⁴University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹⁴University of Medical Center, Rochester, NY, USA; ¹SFLUIDDA, Inc., New York, NY, USA; ¹SFLUIDDA, Inc., New York, NY, USA; ¹SFLUIDDA, Inc., San Diego, CA, USA; ¹University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹⁴University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹⁴University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹⁴University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹⁴University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹⁴University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹⁴University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹⁴University of Melbourne at St. Vincent's Hospital, Fitzroy, VIC, Australia; ¹⁴University of Melbourne, St. Vincent's Hospital, NY, USA; ¹¹University of Melbourne, St. Vincent's Hospital, NY, USA; ¹

BACKGROUND

- PAH is characterized by pulmonary vascular remodeling and loss of small distal pulmonary arteries ("pruning"), leading to increased pulmonary vascular resistance (PVR) and dilation of larger proximal vessels (Figure 1)
- The volume of blood distribution in pulmonary vessels can be quantified by computed tomographic (CT) imaging; pulmonary vascular pruning on CT has been shown to correlate with histologic pulmonary vascular remodeling¹
- Seralutinib, a highly potent inhibitor of PDGFRa/ß, CSF1R, and c-KIT kinase pathways that activate inflammation, proliferation, and fibrosis, has the potential to treat pulmonary vascular remodeling²
- The phase 2 TORREY study of inhaled seralutinib in patients with WHO Group I PH met its primary endpoint of reduction in PVR at 24 weeks³ (NCT04456998; see QR code to the right for more information)
- In a CT substudy of TORREY, the potential of seralutinib to reverse remodel the pulmonary vasculature in PAH patients was evaluated

Figure 1. Changes in the pulmonary vasculature quantifiable by CT imaging

BV5A: blood vessel volume (BVV) of pulmonary arteries with a cross-sectional area (CSA) < 5 mm²; BV5-10A: BVV of pulmonary arteries with a CSA between 5 – 10 mm²; BV10A: BVV of pulmonary arteries with a CSA > 10 mm²; BV510ARatio: BV5A/BV10A. Illustration adapted from FLUIDDA, Inc.

METHODS

- Thin-section, volumetric, non-contrast chest CTs were performed, followed by automated pulmonary vascular segmentation
- Baseline and Week 24 blood vessel volumes (BVVs) were determined at distinct levels defined by vessel cross-sectional area (CSA) in 19 subjects on double or triple PAH-specific background therapy
- BVVs of pulmonary arteries with a CSA < 5 mm² (BV5A) and > 10 mm² (BV10A) were calculated
 The BV5A-to-BV10A ratio (BV510ABATIO) was used to express relative redistribution of pulmona
- The BV5A-to-BV10A ratio (BV510ARATIO) was used to express relative redistribution of pulmonary arterial BVV
- Linear regression was used to model the treatment effect

RESULTS

Seralutinib for the Treatment of PAH: Results from the Ph2 TORREY Study

Table 1. Patient characteristics

Characteristic	Total	Characteristic	Total
N	19	PAH classification, n (%)	
Age, mean (SD), y	49.26 (12.07)	Idiopathic	10 (52.6)
Sex, n (%)		Heritable	2 (10.5)
Female	18 (94.7)	Associated with CTD	3 (15.8)
Male	1 (5.3)	Drug- or toxin-induced	3 (15.8)
BMI, mean (SD)	30.42 (7.59)	Associated with congenital shunts	1 (5.3)
Treatment, n (%)		WHO FC, n (%)	
Seralutinib	7 (36.8)	Class II	7 (36.8)
Placebo	12 (63.2)	Class III	12 (63.2)

BMI, body mass index; CTD, connective tissue disease; FC, Functional Class; PAH, pulmonary arterial hypertension.

Figure 2. BV5A/BV10A ratio increased from baseline (BL) to Week 24 in the seralutinib group vs. placebo. A. Box plots show median values with upper and lower quartiles for BV5A/BV10A ratio. Least squares mean difference estimate (95% CI) for seralutinib vs. placebo was 0.845 (0.105, 1.585); p = 0.028. **B.** Changes in BV5A/BV10A ratio from BL to Week 24 for individual patients. Linear regression models adjusted for baseline values and treatment arm.

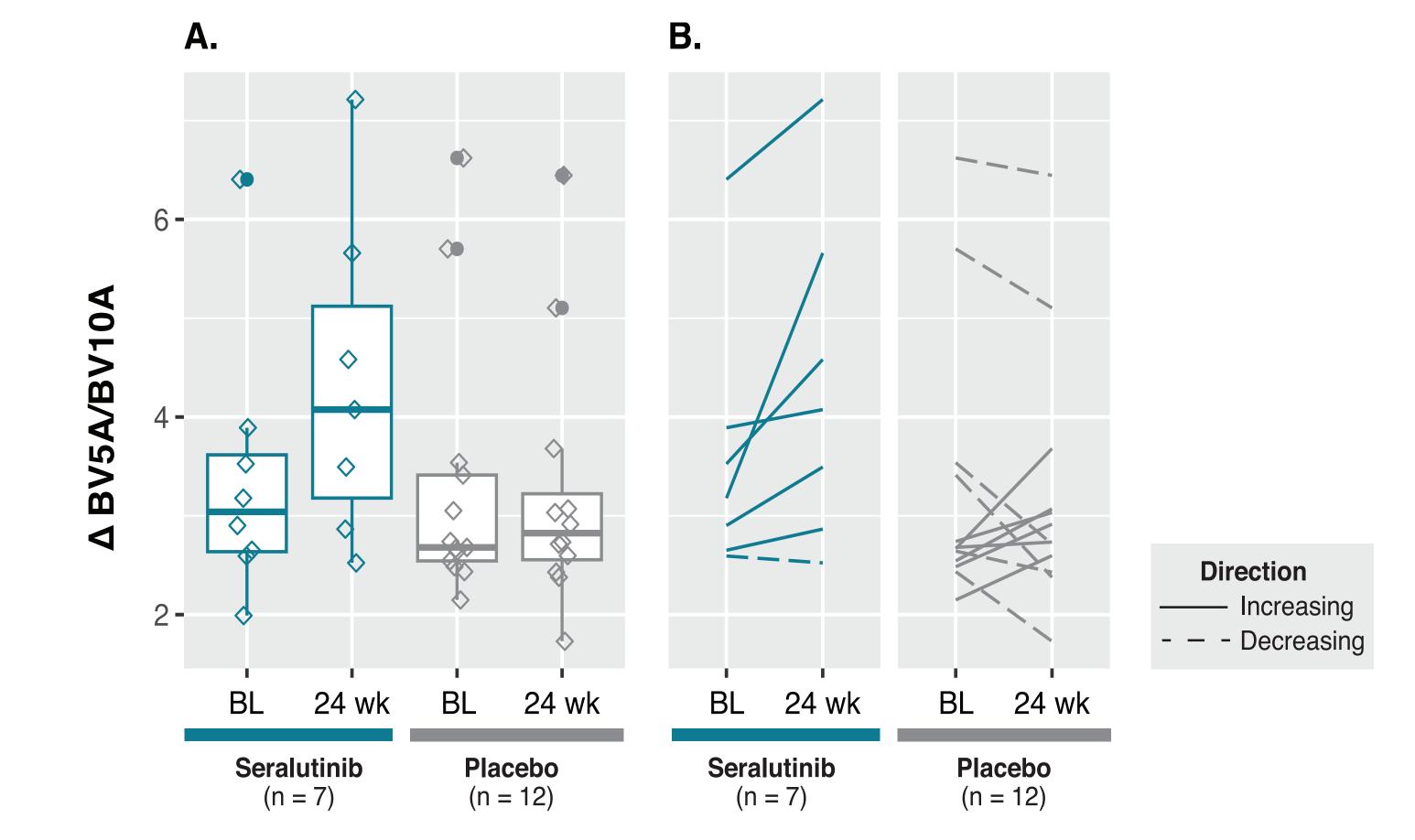
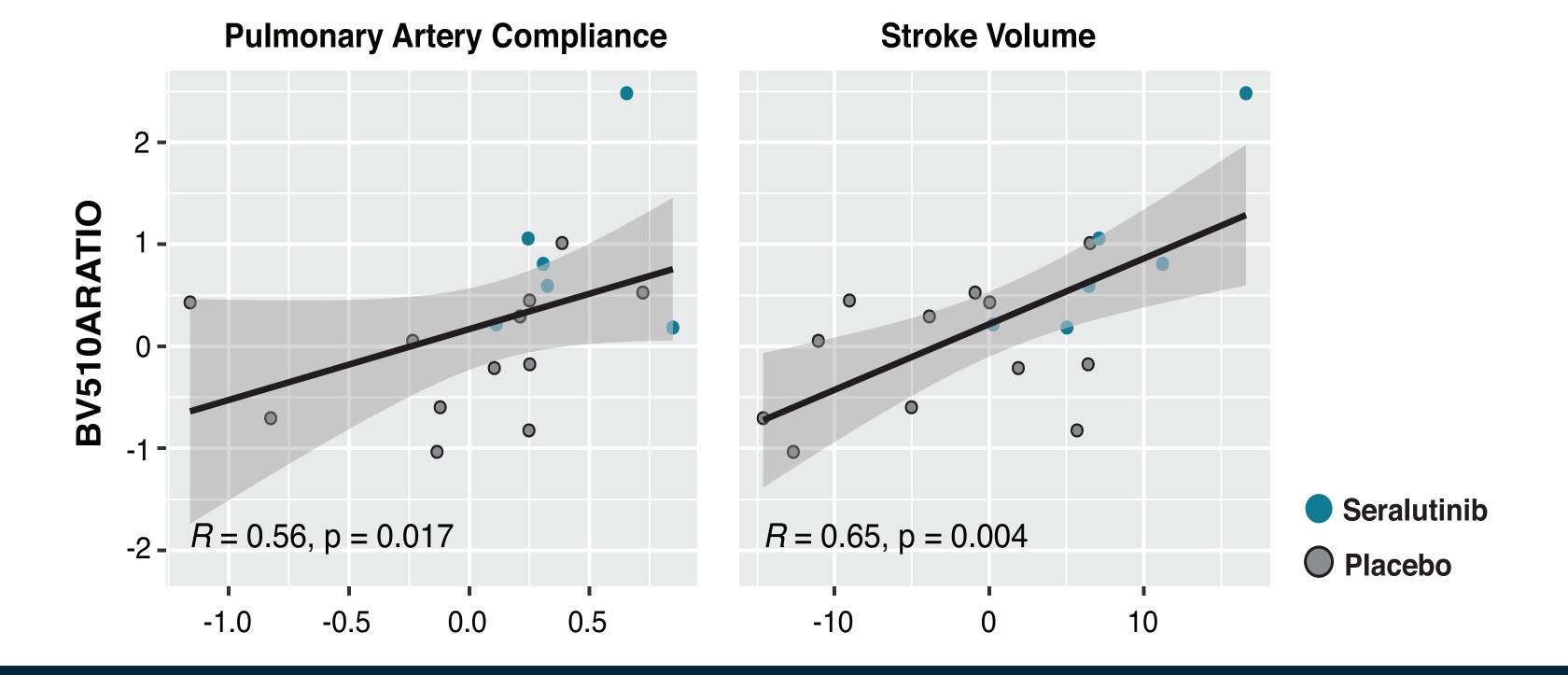
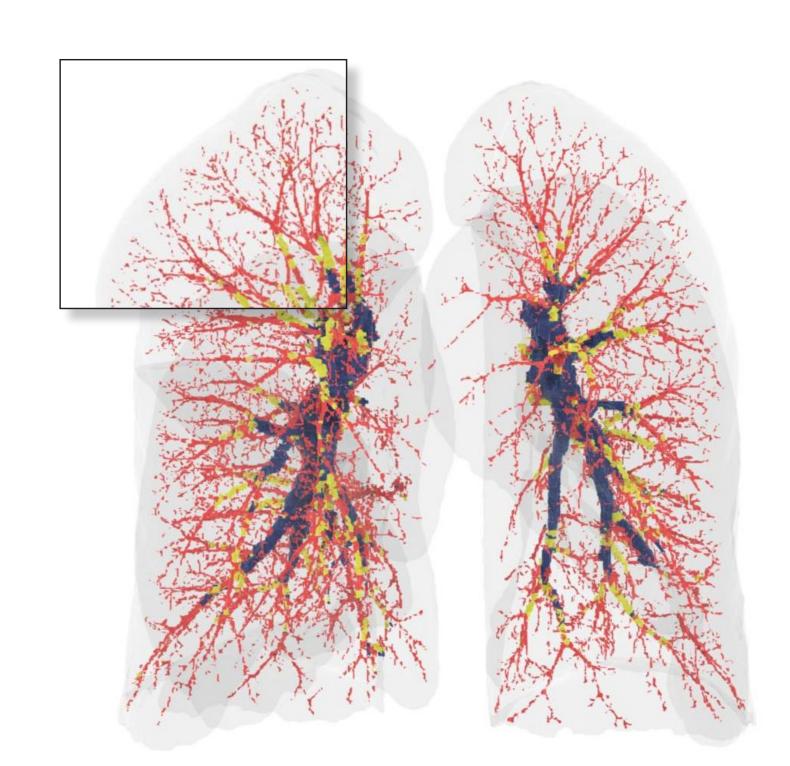
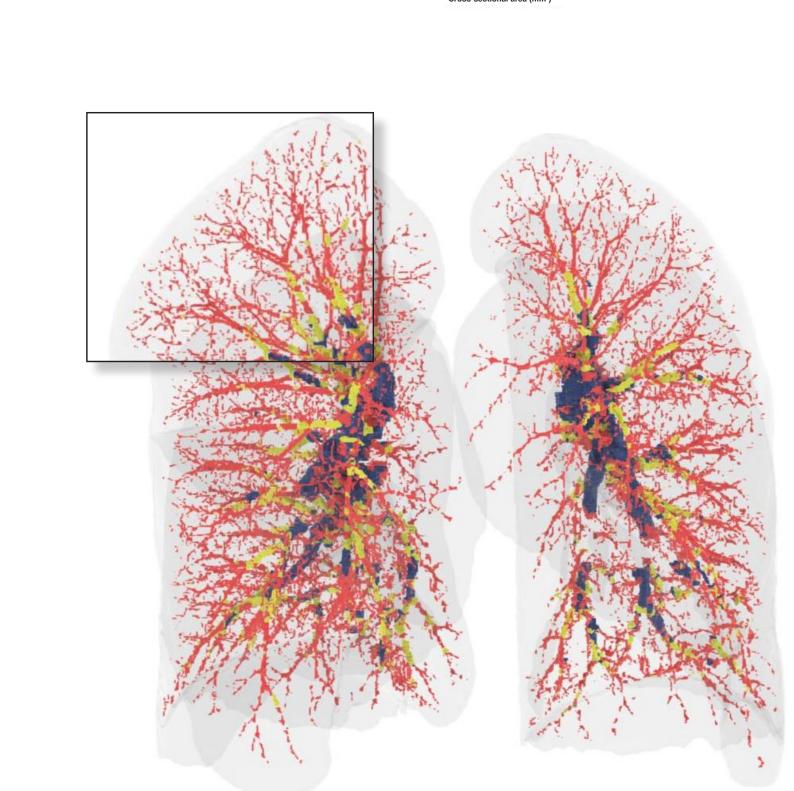



Figure 3. Change in BV5A/BV10A ratio from baseline to Week 24 correlates with change in hemodynamic parameters


Figure 4. CT images at baseline and Week 24


A. 24-year-old placebo-treated female patient with iPAH, FC II, receiving PDE5 inhibitor and prostacyclin background treatment

- Change in PVR: 283 dyne*s/cm⁵ (+65.4%)
- Change in BV5A/BV10A ratio: -0.70 (-28.9%)

Baseline

B.

NOTE: Insets indicate 1.3x magnification.

inhibitor, and prostacyclin

ERA, endothelin receptor antagonist; FC, Functional Class; iPAH, idiopathic pulmonary arterial hypertension; PDE5, phosphodiesterase 5; PVR, pulmonary vascular resistance.

B. 58-year-old seralutinib-treated female patient with iPAH,

Change in PVR: -159 dyne*s/cm⁵ (-39.0%)

Change in BV5A/BV10A ratio: +2.5 (+78.0%)

FC II, receiving background treatment with an ERA, PDE5

CONCLUSIONS

This study was supported by Gossamer Bio, Inc.

- There was a significant improvement in the ratio of blood vessel volume in distal vessels relative to larger vessels (BV510ARATIO), consistent with a reverse remodeling effect of seralutinib
- The BV510ARATIO correlated with important measures of right ventricular-pulmonary artery coupling, as measured by pulmonary artery compliance and stroke volume
- To increase our understanding of the effect of seralutinib on pulmonary vascular remodeling, a CT substudy is planned for the phase 3 PROSERA trial (NCT05934526)

References: 1 Synn AJ, et al. *Pulm Circ.* 2021;11(4):20458940211061284; 2 Galkin A, et al. *Eur Respir J.* 2022;60:2102356; 3 Frantz RP, et al. *Am J Respir Crit Care Med.* 2023;207:A6726.

Acknowledgements: We thank all patients, their families, and all the TORREY study investigators and study coordinators who participated in TORREY.

