
   

BACKGROUND
•  �PAH is characterized by pulmonary vascular remodeling and loss of small distal pulmonary arteries 

(“pruning”), leading to increased pulmonary vascular resistance (PVR) and dilation of larger proximal 
vessels (Figure 1)

•	The volume of blood distribution in pulmonary vessels can be quantified by 
computed tomographic (CT) imaging; pulmonary vascular pruning on CT has 
been shown to correlate with histologic pulmonary vascular remodeling1

•	Seralutinib, a highly potent inhibitor of PDGFRα/ß, CSF1R, and c-KIT kinase 
pathways that activate inflammation, proliferation, and fibrosis, has the 
potential to treat pulmonary vascular remodeling2

•	The phase 2 TORREY study of inhaled seralutinib in patients with WHO 
Group I PH met its primary endpoint of reduction in PVR at 24 weeks3 
(NCT04456998; see QR code to the right for more information)

•	 In a CT substudy of TORREY, the potential of seralutinib to reverse remodel 
the pulmonary vasculature in PAH patients was evaluated

RESULTS

Figure 1. Changes in the pulmonary vasculature quantifiable by CT imaging

•	Thin-section, volumetric, non-contrast chest CTs were performed, followed by automated pulmonary 
vascular segmentation

•	Baseline and Week 24 blood vessel volumes (BVVs) were determined at distinct levels defined by 
vessel cross-sectional area (CSA) in 19 subjects on double or triple PAH-specific background therapy

•	BVVs of pulmonary arteries with a CSA < 5 mm2 (BV5A) and > 10 mm2 (BV10A) were calculated
•	The BV5A-to-BV10A ratio (BV510ARATIO) was used to express relative redistribution of pulmonary 

arterial BVV 
•	Linear regression was used to model the treatment effect

METHODS

CONCLUSIONS

•	 There was a significant improvement in the ratio of blood vessel volume in distal vessels relative to larger vessels (BV510ARATIO), consistent with a reverse 
remodeling effect of seralutinib​

•	 The BV510ARATIO correlated with important measures of right ventricular-pulmonary artery coupling, as measured by pulmonary artery compliance and  
stroke volume​

•	 To increase our understanding of the effect of seralutinib on pulmonary vascular remodeling, a CT substudy is planned for the phase 3 PROSERA trial 
(NCT05934526)

References: 1 Synn AJ, et al. Pulm Circ. 2021;11(4):20458940211061284; 2 Galkin A, et al. Eur Respir J. 2022;60:2102356; 3 Frantz RP, et al. Am J Respir Crit Care Med. 2023;207:A6726.
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Table 1. Patient characteristics Figure 4. CT images at baseline and Week 24 
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BV5ABV5-10ABV10A

Blood Vessels With Cross-sectional Area

10 mm2 (BV10) 5 mm2 (BV5)

Healthy
Blood Vessels

BV5ABV5-10ABV10A

Blood Vessels With Cross-sectional Area

10 mm2 (BV10) 5 mm2 (BV5)

PAH
Blood Vessels

Remodeling

Reverse 
Remodeling

> 10 mm2                    5 – 10 mm2                < 5 mm2 > 10 mm2                    5 – 10 mm2               < 5 mm2

BV5A: blood vessel volume (BVV) of pulmonary arteries with a cross-sectional area (CSA) < 5 mm2; BV5-10A: BVV of pulmonary arteries with a CSA between 5  – 10 mm2; 
BV10A: BVV of pulmonary arteries with a CSA > 10 mm2; BV510ARatio: BV5A/BV10A. Illustration adapted from FLUIDDA, Inc.

Characteristic Total
N 19
Age, mean (SD), y 49.26 (12.07)
Sex, n (%)

Female 18 (94.7)
Male 1 (5.3)

BMI, mean (SD) 30.42 (7.59)
Treatment, n (%)

Seralutinib 7 (36.8)
Placebo 12 (63.2)

Figure 2. BV5A/BV10A ratio increased from baseline (BL) to Week 24 in the seralutinib 
group vs. placebo. A. Box plots show median values with upper and lower quartiles for BV5A/
BV10A ratio. Least squares mean difference estimate (95% CI) for seralutinib vs. placebo was 
0.845 (0.105, 1.585); p = 0.028. B. Changes in BV5A/BV10A ratio from BL to Week 24 for 
individual patients. Linear regression models adjusted for baseline values and treatment arm. 

Figure 3. Change in BV5A/BV10A ratio from baseline to Week 24 correlates with 
change in hemodynamic parameters
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NOTE: Insets indicate 1.3x magnification.

ERA, endothelin receptor antagonist; FC, Functional Class; iPAH, idiopathic 
pulmonary arterial hypertension; PDE5, phosphodiesterase 5; PVR, pulmonary 
vascular resistance.

A. 	24-year-old placebo-treated female patient with iPAH,  
FC II, receiving PDE5 inhibitor and prostacyclin 
background treatment

      • Change in PVR: 283 dyne*s/cm5 (+65.4%)
      • Change in BV5A/BV10A ratio: -0.70 (-28.9%)

B.	58-year-old seralutinib-treated female patient with iPAH, 
FC II, receiving background treatment with an ERA, PDE5 
inhibitor, and prostacyclin

      • Change in PVR: -159 dyne*s/cm5 (-39.0%)
      • Change in BV5A/BV10A ratio: +2.5 (+78.0%)
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Characteristic Total
PAH classification, n (%)
Idiopathic 10 (52.6)
Heritable 2 (10.5)
Associated with CTD 3 (15.8)
Drug- or toxin-induced 3 (15.8)
Associated with congenital shunts 1 (5.3)

WHO FC, n (%)
Class II 7 (36.8)
Class III 12 (63.2)

BMI, body mass index; CTD, connective tissue disease; FC, Functional Class; PAH, pulmonary arterial hypertension.
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