$\mathbf{208}$

SERALUTINIB IMPROVES PULMONARY ARTERIAL BLOOD VESSEL VOLUME DISTRIBUTION IN PULMONARY ARTERIAL HYPERTENSION (PAH): RESULTS OF THE TORREY PHASE 2 IMAGING SUBSTUDY


Presented at the **PVRI** Annual Congress London, UK 31 January–3 February 2024

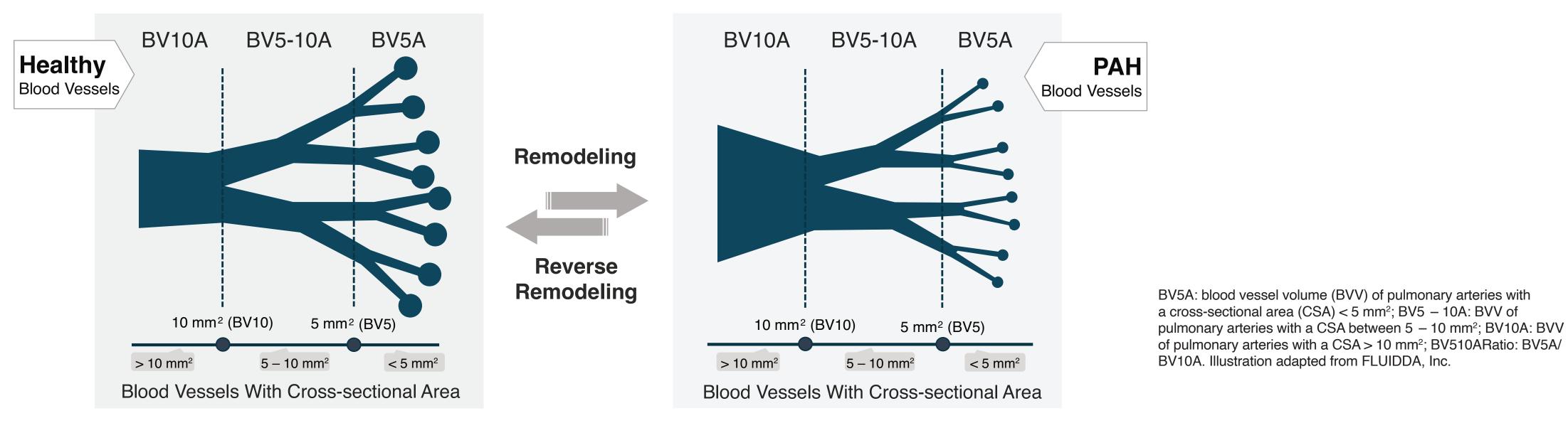
Luke S. Howard¹, Farbod N. Rahaghi², Marion Delcroix³, Sandeep Sahay⁴, Namita Sood⁵, Ronald L. Zolty⁶, Murali M. Chakinala⁷, Veronica Franco⁸, Pavel Jansa⁹, Shelley M. Shapiro¹⁰, Leslie A. Spikes¹¹, Wendy Stevens¹², R. James White¹³, Raymond L. Benza¹⁴, Richard N. Channick¹⁵, Kelly M. Chin¹⁶, Robert P. Frantz¹⁷, Hossein-Ardeschir Ghofrani¹⁸, Anna R. Hemnes¹⁹, Vallerie V. McLaughlin²⁰, Olivier Sitbon²¹, Jean-Luc Vachiéry²², Roham T. Zamanian²³, Patrick Muchmore²⁴, Ben Lavon²⁴, Jan de Backer²⁴, Thao Duong-Verle²⁵, Robert F. Roscigno²⁵, David Mottola²⁵, Richard Aranda²⁵, Matt Cravets²⁵, Robin Osterhout²⁵, Jean-Marie Bruey²⁵, Ed Parsley²⁵, Lawrence S. Zisman²⁵

¹Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK; ²Brigham and Women's Hospital, Boston, MA, USA, ³University Hospitals of Leuven, Belgium, ⁴Houston Methodist Hospital/Weill Cornell Medicine, Houston, TX, USA, ⁵UC Davis Medical Center, Sacramento, CA, USA, ⁶University of Nebraska Medical Center, Omaha, NE, USA, ⁷Washington University School of Medicine, St. Louis, MO, USA, ⁸The Ohio State University Hospital, Prague, Czech Republic, ¹⁰Greater Los Angeles VA Healthcare System and David Geffen UCLA School of Medicine, Los Angeles, CA, USA, ¹¹University of Kansas Medical Center, Kansas City, KS, USA, ¹²The University of Melbourne at St. Vincent's Hospital, ¹³University of Rochester Medical Center, Rochester, NY, USA, ¹⁴Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA, ¹⁵University of California Los Angeles, UCLA Medical Center, Los Angeles, CA, USA, ¹⁶UT Southwestern Medical Center, Dallas, TX, USA, ¹⁷Mayo Clinic, Rochester, MN, USA, ¹⁸Justus-Liebig-University Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health, Cardio-Pulmonary Institute; Member of the German Center for Lung Research (DZL), Giessen, Germany; ¹⁹Vanderbilt University, Vanderbilt University, Vanderbilt University of Michigan, Ann Arbor, MI, USA, ²¹Hôpital Bicêtre (AP-HP), Université Paris-Saclay, Le Kremlin-Bicêtre, France, ²²Université Libre de Bruxelles, HUB – Hôpital Erasme, Brussels, Belgium, ²³Stanford University School of Medicine, Stanford Medicine, Stanford, CA, USA, ²⁴FLUIDDA, Inc., New York, NY, USA, ²⁵Gossamer Bio, Inc., San Diego, CA, USA

BACKGROUND

- PAH is characterized by pulmonary vascular remodeling and loss of small distal pulmonary arteries ("pruning"), leading to increased pulmonary vascular resistance (PVR) and dilation of larger proximal vessels (Figure 1)
- The volume of blood distribution in pulmonary vessels can be quantified by computed tomographic (CT) imaging; pulmonary vascular pruning on CT has been shown to correlate with histologic pulmonary vascular remodeling¹
- Seralutinib, a highly potent inhibitor of PDGFRa/B, CSF1R, and c-KIT kinase pathways that activate inflammation, proliferation,

METHODS


- Thin-section, volumetric, non-contrast chest CTs were performed, followed by automated pulmonary vascular segmentation
- Baseline and Week 24 blood

and fibrosis, has the potential to treat pulmonary vascular remodeling²

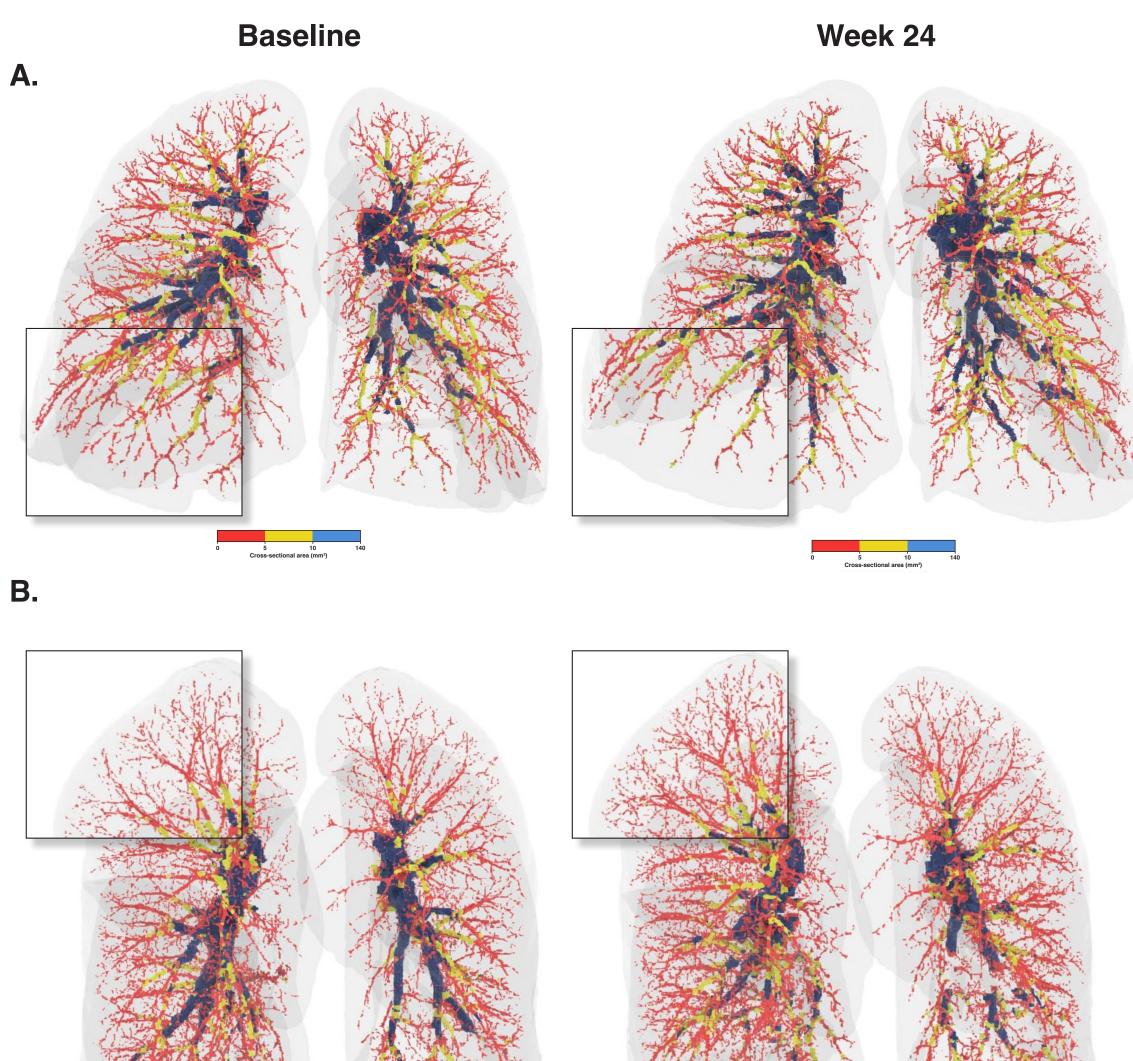
• The phase 2 TORREY study of inhaled seralutinib in patients with WHO Group I PH met its primary endpoint of reduction in PVR at 24 weeks³ (NCT04456998; see QR code to the right for more information)

• In a CT substudy of TORREY, the potential of seralutinib to reverse remodel the pulmonary vasculature in PAH patients was evaluated

Figure 1. Changes in the pulmonary vasculature quantifiable by CT imaging

Seralutinib for the Treatment of PAH: **Results from the Ph2 TORREY Study**

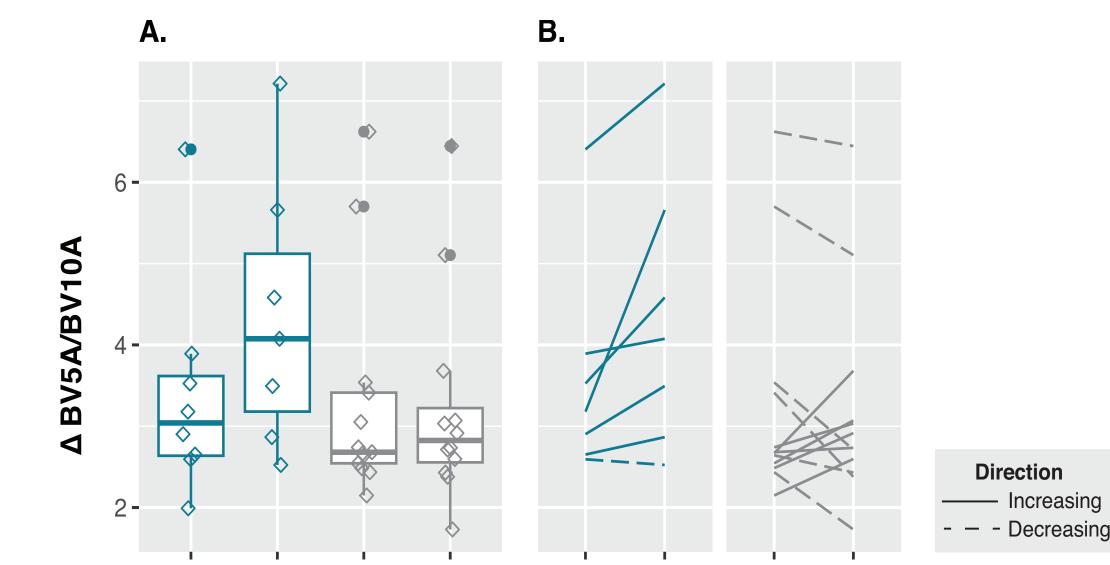
vessel volumes (BVVs) were determined at distinct levels defined by vessel cross-sectional area (CSA) in 19 subjects on double or triple PAH-specific background therapy


- BVVs of pulmonary arteries with a CSA $< 5 \text{ mm}^2$ (BV5A) and $> 10 \text{ mm}^2$ (BV10A) were calculated
- The BV5A-to-BV10A ratio (BV510ARATIO) was used to express relative redistribution of pulmonary arterial BVV
- Linear regression was used to model the treatment effect

RESULTS

Table 1. Patient characteristics

Characteristic	Total		Characteristic	Total
Ν	19		PAH classification, n (%)	

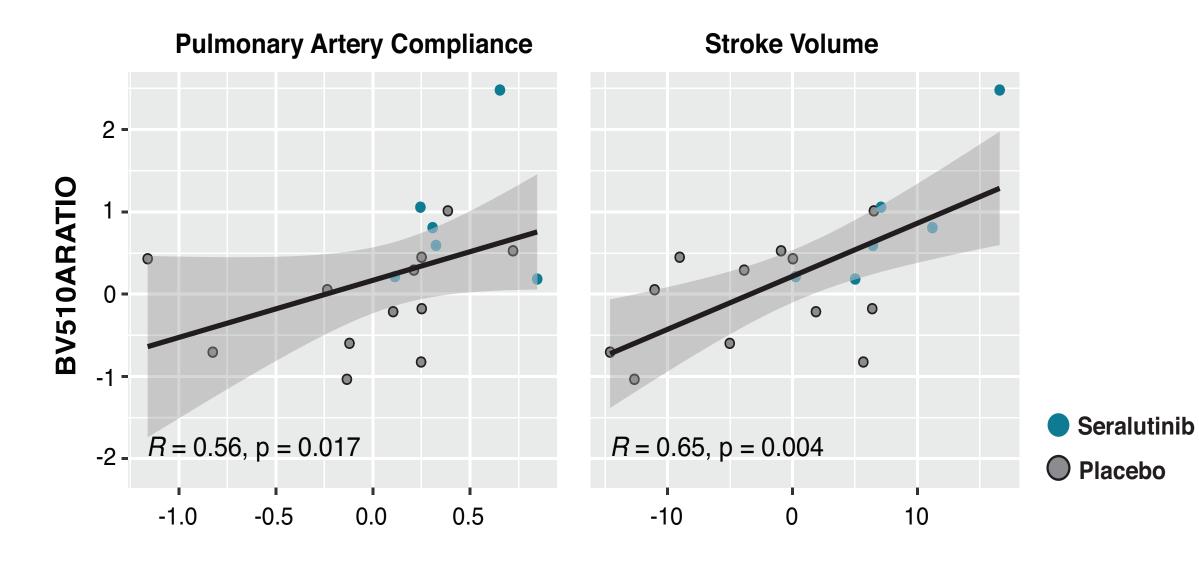

Figure 4. CT images at baseline and Week 24

Age, mean (SD), y	49.26 (12.07)	Idiopathic	10 (52.6)
Sex, n (%)		Heritable	2 (10.5)
Female	18 (94.7)	Associated with CTD	3 (15.8)
Male	1 (5.3)	Drug- or toxin-induced	3 (15.8)
BMI, mean (SD)	30.42 (7.59)	Associated with congenital shunts	1 (5.3)
Treatment, n (%)		WHO FC, n (%)	
Seralutinib	7 (36.8)	Class II	7 (36.8)
Placebo	12 (63.2)	Class III	12 (63.2)

BMI, body mass index; CTD, connective tissue disease; FC, Functional Class; PAH, pulmonary arterial hypertension.

Figure 2. BV5A/BV10A ratio increased from baseline (BL) to Week 24 in the seralutinib group vs. placebo. A. Box plots show median values with upper and lower quartiles for BV5A/BV10A ratio. Least squares mean difference estimate (95% CI) for seralutinib vs. placebo was 0.845 (0.105, 1.585); p = 0.028. **B.** Changes in BV5A/ BV10A ratio from BL to Week 24 for individual patients. Linear regression models adjusted for baseline values and treatment arm.

A. 24-year-old placebotreated female patient with iPAH, FC II, receiving PDE5 inhibitor and prostacyclin background treatment


- Change in PVR: 283 dyne*s/cm⁵ (+65.4%)
- Change in BV5A/BV10A ratio: -0.70 (-28.9%)
- **B. 58-year-old seralutinib**treated female patient with iPAH, FC II, receiving background treatment with an ERA, PDE5 inhibitor, and prostacyclin
- Change in PVR: -159 dyne*s/cm⁵ (-39.0%)
- Change in BV5A/BV10A ratio: +2.5 (+78.0%)

NOTE: Insets indicate 1.3x magnification.

ERA, endothelin receptor antagonist; FC, Functional Class; iPAH, idiopathic pulmonary arterial hypertension; PDE5, phosphodiesterase 5; PVR, pulmonary vascular resistance.

BL 24 wk	BL 24 wk	BL 24 wk	BL 24 wk
Seralutinib	Placebo	Seralutinib	Placebo
(n = 7)	(n = 12)	(n = 7)	(n = 12)

Figure 3. Change in BV5A/BV10A ratio from baseline to Week 24 correlates with change in hemodynamic parameters

CONCLUSIONS

- There was a significant improvement in the ratio of blood vessel volume in distal vessels relative to larger vessels (BV510ARATIO), consistent with a reverse remodeling effect of seralutinib
- The BV510ARATIO correlated with important measures of right ventricular-pulmonary artery coupling, as measured by pulmonary artery compliance and stroke volume
- To increase our understanding of the effect of seralutinib on pulmonary vascular remodeling, a CT substudy is planned for the phase 3 PROSERA study (NCT05934526)

References: 1 Synn AJ, et al. Pulm Circ. 2021;11(4):20458940211061284; 2 Galkin A, et al. Eur Respir J. 2022;60:2102356; 3 Frantz RP, et al. Am J Respir Crit Care Med. 2023;207:A6726.

Acknowledgements: We thank all patients, their families, and all the TORREY study investigators and study coordinators who participated in TORREY.

This study was supported by Gossamer Bio, Inc.

